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Two-frequency control and suppression of tunneling in the driven double well
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The effect of two-frequency driving of a symmetric double well is investigated classically and quantum
mechanically. By computing Husimi distributions it is shown that control and suppression of tunneling
may be achieved by driving the system with two fields whose frequencies are in a 1:2 ratio. In particular,
a second field of finite duration can be used to selectively trap the wave packet in either well.

PACS number(s): 05.45.+b, 03.65.—w

The possibility of controlling the time evolution of a
molecular system has long appealed to chemical physi-
cists in their efforts to perform mode selective chemistry,
i.e., control the take-up, storage, and disposal of energy
in a molecule in order to effect the desired level of prod-
uct selectivity. Two ways of doing this are currently be-
ing investigated and are usually labeled passive and active
control [1]. In passive control the system is prepared in a
particular way such that its subsequent time evolution
will favor the desired product (control of initial condi-
tions). Active control, on the other hand, essentially in-
volves shepherding the wave function using an external
field to achieve mode selectivity (direct manipulation of
the equations of motion). Some studies have used op-
timal control theory to try to determine the best field
needed to achieve a particular target wave function, al-
though the optimum field may turn out to be unrealizable
experimentally [2]. External fields can dramatically
change the structure of classical phase space and this, in
turn, may have profound effects on the quantum evolu-
tion. Recently, Grossman et al. [3] demonstrated that
an external field can be used to suppress tunneling in a
driven double-well system. This seminal finding has
stimulated much interest in the use of external fields to
suppress tunneling; e.g., Bavli and Metiu [4] found that a
semi-infinite laser pulse can be used to localize an elec-
tron in one of the wells of a double-well potential. We
have studied a similar double-well system, and find that a
combination of active and passive control, motivated by a
study of classical phase space, can provide remarkable re-
gulation of tunneling in this system. Specifically, a prin-
cipal driving field is used to enhance the tunneling rate,
while a second field of lower field strength is used to
switch the tunneling on or off, trapping the particle in ei-
ther of the wells, essentially at will. Thus, we not only
demonstrate suppression of tunneling but show that an
appropriate combination of the two fields can be used to
selectively control tunneling in this system.

The double well provides an excellent and realistic
paradigm for a variety of important atomic and molecu-
lar systems; two of the best known examples being nu-
clear tunneling in pyramidal molecules like ammonia,
and electron tunneling in the hydrogen molecular ion. In
addition to microscopic examples, the prediction of tun-
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neling in mesoscopic systems [superconducting quantum
interference devices (SQUID’s)] promises an especially in-
triguing manifestation of the phenomenon [S]. It is im-
portant to recognize that two related types of tunneling
can occur in quantum mechanics. The more well known
is tunneling through a physical potential-energy barrier,
as exemplified by the undriven symmetric double-well po-
tential. However, tunneling of a different nature may
also occur, in which flux moves between two (or more)
different regions in phase space that are separated classi-
cally by dynamical barriers to transport. This is usually
referred to as dynamical tunneling and may, for example,
connect disjoint regular (nonchaotic) volumes of phase
space that are separated by chaotic regions [6]. Because
the driven double well combines both dynamical tunnel-
ing and classically chaotic dynamics it is an ideal system
in which to study the connection between tunneling and
chaos [7,8]. From a more practical standpoint the
relevance of this problem to devices like the Josephson
junction makes it worthy of continued investigation.

The driven double well has been studied from a variety
of angles, and, recently, Lin and Ballentine [9] showed
that tunneling rates are dramatically enhanced by the
presence of the external field. In contrast, Grossmann
et al. [3] demonstrated that coherent suppression of tun-
neling is also possible by a judicious choice of the fre-
quency and amplitude of the monochromatic driving
force. Grossmann et al. [3] presented a detailed Floquet
analysis to show that suppression of tunneling occurs
when the quasienergy states become degenerate.
Suppression of tunneling by an external field is clearly of
considerable fundamental interest and could conceivably
be observed experimentally. In this Rapid Communica-
tion the problem of driving a double well at two different
frequencies is investigated and it is shown that tunneling
can be controlled or suppressed coherently by using two
external driving fields whose frequencies are in a 1:2 ra-
tio.

The Hamiltonian for a particle in a quartic double-well
potential subjected to two-frequency forcing is the follow-
ing:

H=1p>—lax?+1bx*+A,x coswt

+A,x cos(wyt +¢) . (1
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Throughout, a =20, b =2, A;=10, ;=6.07, and w,, A,,
and the relative phase ¢ are varied. Atomic units are as-
sumed. The terms in w; and w, will be referred to as the
first and second fields, respectively. The frequency o, is
quite close to being resonant with the energy difference
between the ground and first excited states of the double
well, neglecting tunneling splittings. In the absence of
the second field, this is the same system as that studied by
Lin and Ballentine [9].

Addition of a single driving force to the double well
[i.e., A;70, A,=0 in Eq. (1)] destroys the integrability of
the system and gives rise to chaotic motion. This is evi-
dent in Fig. 1, which shows composite Poincaré surfaces
of section (SOS) obtained by numerically integrating ten
classical trajectories with randomly chosen initial con-
ditions. The SOS were obtained by strobing the
classical dynamics at times ¢)=2n/w(n+m/4),
n=0,1,...,2500 for each value of m =0,1,2,3. The
period of the driving field 7=27/w,. Only SOS for m =0
and 2 are shown, corresponding to whole- and half-period
strobing, respectively. Note that, while motion in the vi-
cinity of the separatrix is quite strongly chaotic, islands
of regular dynamics persist in both wells, indicating the
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FIG. 1. Poincaré surfaces of section for a single external fre-
quency strobed as described in the text at times ¢,". In (a),
m =0; and in (b), m =2, i.e., a time 7/w, later. Ten classical
trajectories were integrated using randomly selected initial con-
ditions.
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existence of Kolmogorov-Arnold-Moser (KAM) surfaces
or tori in an extended phase space [8,9]. The islands are
not associated with the elliptic fixed points of the un-
driven system, but rather correspond to field-induced res-
onances. The KAM surfaces associated with the fixed
points lying at the minima of the undriven potential have
disappeared for the value of A used. At the separatrix an
infinite number of resonances converge and, there, the
motion is always chaotic for any finite periodic driving
force.

Examination of the quarter-period SOS reveals that the
islands rotate in each of the two wells as a function of
time [9]. An important property of the system also be-
comes apparent upon examining the SOS; the phase-
space structure in Fig. 1(b) is essentially a mirror image
of that in Fig. 1(a). This is because the system possesses a
discrete symmetry [3,11],

H(p,x,t;A,=0)=H —p,—x,z+wl;xzzo L@
1

Discrete symmetries are closely connected with dynami-
cal tunneling, and in this case the symmetry is responsi-
ble for coherent dynamical tunneling between the KAM
tori. This was discovered numerically by Lin and Ballen-
tine [9,12], although Peres [11] and Grossmann et al. [3]
made an explicit connection between the observed tunnel-
ing behavior and the symmetry of Eq. (2). The periodici-
ty of the Hamiltonian allows a formulation in terms of
quasienergy states. For the double well driven at a single
frequency the numerical results of Lin and Ballentine
seem to indicate that some of the quasienergy states are
localized in regular regions of phase space; the fact that
they belong to two symmetry classes (odd and even)
means that the quasienergies will come as doublets [11].
Grossman et al. [3] independently recognized that this
could be exploited to completely suppress tunneling by
choosing an external field having the appropriate intensi-
ty and frequency so as to produce a crossing of the
quasienergies and thus suppression of tunneling. (The
time scale for tunneling is related to the splitting of the
quasienergies and thus a crossing of the quasienergies
shuts down the tunneling process completely.) Their cal-
culation achieved this by using frequencies comparable to
the bare splitting of the levels in the unperturbed system,
and good localization of the packet was observed [3]. (A
semiclassical analysis of this problem in terms of a model
two-level system has recently been presented by Gomez-
Llorente and Plata [10].) These studies demonstrate
suppression of tunneling, but it is interesting to speculate
as to whether controlled suppression and enhancement of
tunneling can be achieved. An alternative way of
suppressing tunneling might reasonably be to destroy the
discrete symmetry itself; for example, by using a second
driving field that has the advantage of providing access to
additional control parameters.

Addition of a second driving term having a different
frequency can have dramatic effects on the classical and
quantum dynamics of Hamiltonian as well as non-
Hamiltonian systems [13—15]. In principle, a second field
can create new resonance zones that serve to connect the
original resonances and thus enhance transport in phase
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space. However, for the double-well potential, motion in
the vicinity of the separatrix is not expected to be per-
turbed strongly by the existence of a second driving term
because already an infinite number of classical resonances
are starting to overlap in this region. This is borne out by
SOS plots for the two-frequency case in Fig. 2, where it is
seen that, although new resonances are introduced inside
and outside of the separatrix region, the dynamics inside
the separatrix layer is very similar to single-frequency
driving. One major difference is apparent in the case of a
1:2 ratio of driving frequencies; the symmetry between
the two wells is broken quite markedly, indicated by the
relative difference in size of the regular regions in the two
wells (compare Fig. 1). This effect has significant conse-
quences in the quantum dynamics.

Rather than examining the wave function directly, we
follow Lin and Ballentine [9] and compute the Husimi
function,

p=Q#) " ($,, W), 3)

where ¢, , is a minimum uncertainty function that is
Gaussian in position and momentum. In addition to ex-
amining the Husimi function itself, we also compute its
accumulated value by summing the value of p at each
grid point at each quarter period over the total integra-
tion period. The accumulated Husimi plots provide a
time history of density movement and reduce the risk of
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FIG. 2. Poincaré surfaces of section for two-frequency driv-
ing. Strobed as in Fig. 1.
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overlooking any fast tunneling that might be occurring in
between the times at which the Husimi function is exam-
ined. The basic idea is to start out a Gaussian wave
packet in one of the regular or chaotic regions and follow
its time evolution. First, Lin and Ballentine [9] found
that for a wave packet initially localized in one of the reg-
ular regions of Fig. 1(a), the tunneling rate between the
two wells was significantly enhanced as compared to the
undriven system. Second, tunneling between the two
wells was coherent over many periods of the field. A
wave packet initially located in the chaotic region, by
contrast, was found to spread or delocalize significantly
on the same time scale.

Although the classical behavior in the separatrix layer
is similar for one- and two-frequency driving, the quan-
tum dynamics is quite different. Figure 3 compares the
accumulated Husimi distributions for the one- and two-
frequency cases after 3007. For one-frequency driving,
peaks appear in both wells, indicating coherent tunneling.
However, when two frequencies are present, as shown in
Fig. 3(b), tunneling is coherently destroyed and the wave
packet remains localized in the left-hand well. Close ex-
amination reveals that a relatively small amount of trans-
port into the other well has occurred but is negligible on
this time scale. Investigation of time-resolved Husimi
distributions and the staying probability of the particle in
the well confirmed these conclusions. In essence, the
principal field dramatically enhances the tunneling rate,
but introduction of a second field of lower maximum am-
plitude selectively turns off coherent tunneling in the

FIG. 3. Accumulated Husimi distributions after 3007. At
each grid point the value of the Husimi function is summed as a
function of time. The initial state was the same in both cases,
i.e., the initial wave packet had its maximum at x =—1.5 and
p=0. Frame (a) corresponds to single-frequency driving and
frame (b) to two frequencies with w,=2w,, A,=2.5, and $=0.
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problem. After 6007 the packet in the two-frequency
case remains localized as in Fig. 3(b). Varying the phase
¢ also affects the propensity of tunneling. For the field
amplitudes used, suppression of tunneling was most
efficient when ¢ =0 and did not occur at all for ¢=1m/2.
This is related to the symmetry of the total field about the
time axis; the combined driving field is most asymmetric
about the time axis when ¢=0 and is symmetric when
¢=1/2. Correspondingly the discrete symmetry is most
strongly broken when ¢=0. This level of control re-
quires a careful search for the appropriate initial condi-
tions, including particular frequencies and parameters,
and is in accord with the conclusions of Bavli and Metiu
[4], who also noted a similar level of sensitivity. Thus, use
of two fields represents a combination of active and pas-
sive control, in that both careful initial-state preparation
and subsequent manipulation of the time evolution are in-
volved.

In Fig. 4 the Husimi function itself is shown after 175
periods. In this case a single driving term was applied for
110.5 periods, at which point the second field was turned
on (using a trapezoidal rule) over 107. The second field
then remained on for a further 54.57. The parameters
used were A,=2.5 and ¢=m. Phase-space density, ini-
tially localized in the left-hand well, has tunneled
coherently to the right-hand well, where it remains
trapped until the second field is turned off. In general,
the more rapid the turn-on of the second field, the more
effectively is the packet localized. Increasing the field
strength of the second field also improves the trapping.
In practice, by turning the second field on and off, control
of tunneling can be achieved over long times and the
wave packet may be shuttled back and forth between the
two wells many times, essentially at will. These results
reveal the possibility of using a second driving term of
lower maximum amplitude to selectively manipulate tun-
neling in this system.

This work extends previous studies in which localiza-
tion was achieved by use of a single field of infinite or
semi-infinite duration. By using two external driving
fields tunneling in a double-well system could be
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FIG. 4. Husimi distribution after 1757. The initial state was
the same as in Fig. 3. After 110.5 periods the second field was
turned on, as described in the text, trapping the packet in the
right-hand well.

suppressed over hundreds of periods of the driving fields.
The main driving field had the effect of dramatically
enhancing the tunneling rate, while addition of a second
perturbing term was used to suppress tunneling coherent-
ly. By turning the second field on and off in a realistic
fashion, control of coherent tunneling between the two
wells was achieved. In this, the second field acts like a
switch. There clearly remains considerable scope for fu-
ture work, particularly analysis of the quasienergy states
in the more general case of two (or more) arbitrary fre-
quencies. Floquet analysis of multimode systems is
difficult, or impossible, if the driving-field frequencies are
incommensurate (quasiperiodic). However, we emphasize
that multimode Floquet analysis is possible in the present
special situation in which the frequency ratios are com-
mensurate (1:2) and, more generally, when the frequen-
cies are either exactly commensurate or when their ratio
can be approximated by a ratio of (preferably small) in-
tegers. A relevant and related example is provided by
double-frequency ionization experiments and calculations
for Rydberg atoms [16—18].
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